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Abstract. We obtain second-order equations of degree four (six), for travelling wave solutions
of the KdV (Sawada-Kotera/Kaup) equations, which reduce to first-order equations for monotone
solitary waves. For the KdV equation, the singular solutions of this equation with an asymptotic
valueb consist of the well known seéfsolution and a new solution with a non-zero asymptotic
value depending on the wave speed. We show that the well known solitary wave solutions
are determined uniquely as the singular solutions with asymptotic #ataed, which are also
stationary with respect to the wave speed.

1. Introduction
Evolution equations of the form
a
up = o [(ua + uuz + yui + i) + (uuz + qu®) + (pu)] (1.1)

whereu; = 8*u/dx* are proposed as model equations for water waves [1]. The ‘travelling
wave’ solutions are of the form(x, t) = u(x — ct), wherec is the wave speed. As we are
concerned with travelling waves, we redefine> (c + p), hence sep = 0. Furthermore

we takea = B = 1 by rescalingu andx. These equations are integrable only for the
following values of the parameters:

5th order KdV equation (KdV5)y = 3 r=2%4 q=2n

Sawada-Kotera equatiory. = 0 r=4i u=qg=0

Kaup equationy = 3 r= & w=gq=0.

These integrable equations witlix, r) = u(x —ct) admit first integrals that can be obtained
using conserved covariants. It turns out that only the first three of these first integrals
(equations (2.1) and (2.2)) are functionally independent and their existence leads to the
classification above. Thus the differential equations for travelling waves can be reduced
to second-order ordinary differential equations. By eliminatingand u3 among these
equations, we obtain second-order equations which are of degrees 4 and 6, respectively,
for the KdV5 and Sawada-Kotera/Kaup equations (equations (2.7) and (2.8)). The non-
constant factors appearing in the elimination process, except for equation (2.6), are not
solutions of the original equations. This non-constant factor gives a periodic solution of the
Kaup equation.
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Monotone symmetric travelling waves are described by the relaﬁoa W (u), where
W is positive foru € (b, a), and W(a) = W(b) = 0. If furthermoreW’(b) = 0, then the
corresponding wave has an asymptotic value at b, else it is a periodic solution. Since
uy = %W/, the equations for monotone symmetric travelling waves reduce to first-order
equations of the fornF(W’, W, u, ¢) = 0. In sections 3, 4 and 5 we study, respectively,
the singular solutions of the KdV5, Sawada-Kotera and Kaup equations.

For the KdV5 equation we consider solutions that have an asymptotic valuat
necessarily zero. We show that there is a unique envelope corresponding to the well known
secl solution. The other singular solution gives a new solution whose asymptotic value
and maximum amplitude depend on the wave speed. We also show that thesletion
is stationary with respect to the wave speed, Fe= 0.

For the Sawada-Kotera and Kaup equations, because of computational limitations, we
consider only those solutions where all the integration constants are zero. In this case we
also obtain some new solutions, and we show that the usual solitary wave solutions are
uniquely determined as those singular solutions that are also stationary with respect to the
wave speed.

2. Equations for travelling waves

2.1. Integrations using conserved covariants

We recall certain concepts. A differential functidtiu] is a differentiable function of the
derivatives ofu up an arbitrary but fixed order. On the space of differential functions, an
inner product is defined byf, g) = fj;"(fg) dx. Adjoints of linear operators are defined
via this inner product.

A differential functiono is called asymmetryif it satisfies the linearized equation
o,—F,.0 =0, whereF, = Z]’.:g’ %D-/, if F=F(Q,uy,...,uy). Adifferential functiony
is called aconserved covariarif it satisfies the equatiop,+F*T y = 0. Arecursion operator
R is a linear operator that sends symmetries to symmetries. The adjoint of the recursion
operatorR' sends conserved covariants to conserved covariants. In the terminology of [3]
integrable equations have an infinite number of symmetries, hence conserved covariants.

For the KdV5, Sawada-Kotera and Kaup equations it can easily be seep that is a
conserved covariant and it is known that all higher symmetries are total derivatives. Using
these properties one can obtain an infinite number of first integrals as follows.

Let oo = Flu], v» = (R")"yo ando, = R"0o. Then

/J/nF = (¥, 00) = (R0, 00) = (y0, R"00) = (¥0, ).

But the second inner product is just the integralogfand since all symmetries are total
derivatives,(y, F) is a total derivative for alk. Since the time derivative can always be
incorporated into &, term, we obtain an infinite number of first integrals of (1.1) with the
additional restrictionu(x, t) = u(x — ct). It has been observed that only the first three of
these first integrals (for travelling wave solutions) are functionally independent: these are the
ones obtained exactly by the conserved covariants that give a classification of the equations.
In the following computations, we take 0. The computations of conserved covariants are
done using an integration package [4] with the symbolic programming language REDUCE.

The computation of the first integralg, 11, I» is straightforward; the results are given
below.
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KdV5 equation

Conserved covariantsyg = 1 yi=1u Vo = up + l%uz.

First integrals

Io = ug + uou + usp + %u%—}— 1—101434— %uzu—i—uc—i—do (2.1a)
_ 1.2 2 1.2 3.4, 13 12

Iy = ugqu — uguy + U5 + ugu” + ugup — U + U + suSp + zuc+dp (2.1b)

3 2 1.2 3 4.2 1.2 3 2
I = ugquy + Tolalt” — U3 — guzUlU + gUsU + UM + guou]

+1%u2u3 + l%uzuzu + %u%c + %)us + %)u“,u + 1—10u3c + ds. (2.1¢)

Sawada-Kotera/Kaup equatians

Conserved covariantsyg = 1 Y1 =1+ (%y + o )u?
vo=us+ (fy + Huuz + 3y + 2)ul + (—ov? + Ly + Z)u®

First integrals
Io = ug + uou + u%y + %5143 +uc +dp (2.2a)
Iy = i+ (B + ) = 30+ e (—Ly = )+ idu(Zy + )+ ud(y + )
b (B + ) + e+ (ey + k) +ie(By + B+ (220)
L= 3uj +uguou(ty + 3) +uad(3y + 3) +ua®(Ly + Z) +udu(—2y +1)
buszin(By — 3) + (- Sy + 3) + e + w2y + )
By + )~ Yo uadu(By + &) + ity + )
(o + &)+ b Gy + ) + ey + )
+u6(%25y + ﬁ-}) + u4c(725y + l—éo) + do. (2.2)

Remark 1 If u = b is an asymptotic value, them;|,—, = 0 for i > 0. Substituting
these in the first integrals we can obtain the expressions,af = 0, 1, 2 in terms ofb.
If there are two distinct asymptotic valuésandb’, then we should have; (b) = d; ('),
but it is checked that these equations have no consistent solutioh’, hence the KdV5,
Sawada-Kotera and Kaup equations cannot have kink solutions.

Remark 2 If u = a is an extremum value, thery,1],—, = 0. This condition gives the
allowable relationships among the amplitude and the speed of travelling waves, as below.
In the following, we use the notatiowy |,—, = ax.

KdV5 equation with asymptotic value b
() 50c —4a? —10ab —b*> =0 w=—3a—2b

5 5
ap = £ (a — b)? as = Fa(a—b)° (2.39)
(i) 2a®+2a(3b+ 5u) + 7b* + 20bu 4 50c = 0
ap = —1—10(61 — b)? as = 2—15(a —b)® (2.3v)

(i) a® — 2ab + 6b* 4+ 10bu + 10Q- — 2542
ap = —1—10[2612 +a(b +5u) — b(3b + 5u)]
as = 155(a — b)[11a® + 2a(9b + 20u) — 4b% + 10bu + 2517 (2.3
Sawada-Kotera equation witlhy = d; = d, = 0:
225 + 44> =0 a = —a? as = 5psa’. (2.4)
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Kaup equation withly = d, = d, = 0O:

() 225¢c+a’=0 ay = yoa® ap = —1xa® (2.59)
(i) 25¢+a?>=0 as = —2a° a, =0 (2.5)
(i) 100c +a2=0 as = 37—56613 a, = —1%612. (2.50)

We note that (2.B) reduces to (28 for the specific value ofu. This solution
is obtained as a special case, by the vanishing of a coefficient during the elimination
process. Equations (2B (2.4) and (2.b) correspond to the usual solitary waves, while
equation (2.8) corresponds to the new solution given in section 4.

For the Sawada-Kotera and Kaup equations, the list of possible maximum amplitudes
for a non-zero asymptotic value is quite large, but as the singular solutions are studied only
for the casely = di = d> = 0, these results are also omitted.

2.2. Second-order nonlinear equations for travelling waves

The elimination of higher derivatives from the first integrals (2.1)—(2.2) leads to second-order
equations fow. During this elimination process the equations obtained by the vanishing of
the coefficients of higher-order derivatives also give certain solutions. Such a case occurs
only for the Kaup equation.

A solution of the Kaup equation
uy(uz + 2u®+10c) = 0. (2.6)

Assumingu; # 0 and integrating we obtaims = — Lu® — 20uc + 20do, and from the first
integrals we getl; = —10cdy, d» = 5—??03 — 2d3. It can be seen that only static solutions
can have an asymptotic value. Sincgis equal to a third-order polynomial with distinct
roots, the solutions are periodic functions given in terms of elliptic integrals [5].

The eliminations lead to the following equations. We omit the explicit expression of
the coefficients.

KdV5 equation
uj + [Az1u? + Agolu’ + [Ar1uf + Arulluz + [Aow] + Aoau? 4 Agg] = 0. (2.7)
Sawada-Kotera/Kaup equatians
0= I/tg + A5ug + [A41u% + A42]M421 + [A31u? + A32u§ + A33]ug
HApuf 4+ Agou? 4 Agslus + [Aqul + Ao + Arzu?luy
+[A01M§ + Aozu? + Aoglftﬁl_1 =+ A04u% =+ A05]. (28)

2.3. Monotone symmetric travelling waves

Monotone symmetric travelling waves can be described by the equafior W (u)
where W (u) is positive forb < u < a and W) = W) = 0 [1]. We recall that

if uy = du/dx = /W(u), thenx(u) can be obtained by integratingg —'/2. Precisely,

if ug € (b,a), thenx) = uuo WY2E)dg for u > ug, andx(u) = —fuuo W—Y2(&) dg

for u < ug. As x(u) is an increasing function, its inversgx) is defined and it is also
increasing. If the second integral is divergent then the domain of definitidki & semi-
infinite. If W vanishes at an end point where it is differentiable, then all the odd derivatives
of u vanish there, hence can be extended as a symmetric function. Thus in particular, if
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W is analytic, and has a simple zerowat= a and a double zero at = b, then it leads to
a monotone symmetric wave with asymptotic valuand maximum amplitude.

Substitutingu? = W, up = %W/ in equations (2.7)—(2.8), we obtain first-order equations
FW',W,u,c, b) =0 for W. For the KdV5 case, as (2.7) is a quarticWi, the general
solution can in principle be obtained as an algebraic function. However, the determination
of the properties such as the number of real branches and the differentiability of the
corresponding equations is difficult to investigate.

We give here a brief review of the properties of solutions of nonlinear equations of the
form F(W’, W, u, ¢) = 0, based on [2, section 3.5]. Létbe polynomial inW’ and single-
valued inW andu. If F =0 has a simple rooW; when W = Wy, u = up, then W’ can
be solved fromF = 0 as a single-valued functioW’ = f(W, u, ¢) in a neighbourhood of
(1o, Wo, W(). Then there is a unique solution with the initial conditid#$ = W}, W = Wy
andu = ug, provided thatf (W, u, ¢) satisfies a Lipschitz condition. However, even in the
KdV5 case where we can obtain the functiofiéW, u, ¢), it is not possible to check the
Lipschitz condition, hence to discuss uniqueness of solutions (for each of the branches). On
the other hand, at point&V;, Wo, ug) where F(W’, W, u, c) = 0 has a repeated root, the
existence theorems are not applicable at all, but the study of these singular points gives im-
portant information about the structure of the solutions, the most important being the fact that
the envelope of solutions, if it exists, is a singular solution that appears as a squared factor in
the p-discriminant. We report below some definitions and certain results in [2, section 3.5].

The triad (W}, Wo, ug) for which

F(W,W,u,c¢)=0 Fy (W, W,u,c)=0 (2.9)

is called asingular line element At such a point the equatioff (W/, Wo, ug, ¢) = 0 has
a multiple rootW/, hence such points are callealltiple points The polynomial obtained
from the elimination of W’ among these equations is called tha@iscriminant locus The
factors of this polynomial describe various branches of phéiscriminant locus. These
branches may or may not be solutions of the differential equatioi’, W, u, ¢c) = 0. The
p-discriminant locus may contain (i) the envelope of solutions (if there is an envelope),
(ii) the locus of multiple points with coincident tangents (such as cusps), (iiijatocus
which consists of the points where different integral curves have a common tangent, (iv) the
particular solutions corresponding to a specific value of the integration constant in the general
solution. A branch of they-discriminant is a polynomiaP (W, u, ¢) = 0. One can check
directly whether this polynomial actually gives a solution of the original equation, in which
case we obtain aingular solution If P(W, u, ¢) is a squared factor of thg-discriminant
and it gives rise to a solution, this solution is an envelope, else it gives the tac-locus.

We will study the p-discriminant locus for the KdV5 for arbitrary asymptotic value
b, but we takeb = 0 for the Sawada-Kotera and Kaup equations due to computational
limitations.

Critical points of the KdV5 equation

25W?2 + 10u®W + 25u® W + u® 4 5u®u 4 25uc = 0. (2.10)
Critical points of the Sawada-Kotera equation

225W? + 60Wu® + 4u® 4 225:%c = 0. (2.11)
Critical points of the Kaup equatior (= —k?):

225W?2 4+ 120W (u + 5k)?(u — 10k) + 16u?(u + 5k)3(u — 15k) = 0 (2.12)

225W?2 4+ 120Wu(u? — 75k%) + 16(u® — 25c%)?(u? — 100k?) = 0. (2.12b)
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3. Singular solutions of the KdV5 equation with an asymptotic valueb

The equation for monotone symmetric travelling wave solutions of the KdV5 equation is
a fourth degree polynomial iV’ of the form F(W', W, u, ¢, b, u) = 0. The singular
solutions are obtained by eliminating’ among F = 0 and Fy» = 0, factorizing the
resulting expression, and selecting those fact®(8v, u, ¢, b, u) such that whenW’ is
solved from &P /du = 0, it satisfiesF = 0 modulo P = 0. With this method we obtain the
following singular solutions.

W2+ LW (—u + b)2(2u + 3b + 5u)
+ o (—ut + b)*[2u® + 2u(3b + 5p) + Tb? + 20bp + 50c] = 0 (3.1)
W (2u + 3b + 5u)[13u? + 2u(—3b + 10) + 63b% + 120y + 900 — 2002
+ 2 [u? + 2u(b + 2u) + 3b* + 8bp + 20c]?
x[u? — 2ub + 6b? + 10bu + 100c — 2512 = 0. (3.1b)

Equation (3.%) leads to the usual setisolution, and it is actually a squared factor of
the p-discriminant, hence it is the envelope of solutions with an asymptotic Value

Equation (3.%) is a simple factor of thep-discriminant, thus it is a solution
corresponding to a special value of the integration constant in the general solution. We will
show that whert andb belong to a certain open set, there are solutidfiz) leading to
monotone symmetric waves of elevation whose asymptotic values and maximum amplitudes
both depend on the wave speed.

We make the following change of variables

u=v+b wW=b+u ¢ = 10c — 3u?. (3.2)
Then equation (34) can be solved as
W = — 2.2 + 5) (1302 + 200’ + 70u% + 90¢')

4,502+ 200’ + 1007 — 30¢)32, (3.3)

2
w +135

Defining
z=- E=— (3.4)

we obtain
BwEt _ 1 2 1,2 _ 3/2
WEW= = —32(22 + 5) (132" 4 20z + 70+ 90%) + 3=(z° + 20z + 10— 305)/~. (3.5)

We will show that foré < —3, W have a double zero &t¢) and a simple zero at(¢),
with W+ > 0 for b(¢) < z < a(§).

Let
g1=12>+20z + 10— 30¢
q2=7>+5+10
g3 = 132 + 20z + 70+ 90¢ (3.6)
qa=z"+47+6+2
qs = 2z +5.
The zero sets of theg;, i = 1,...,5 are shown in figure 1. It can be checked that the only

intersection point of these curveszs= — 2, E=—3

For definiteness we work wittw* that Ieads to a wave of elevation. By similar
considerations W~ leads to a wave of depression. First note that sinceu£36+ =
—qsq3 + qf/z, W is real forg; > 0, i.e. except for regions (1) and (10) in figure 1.
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Let B and C be defined byB = ¢sq3 and g3 = B2 — 4C. Then one can compute
C = g2q2. As the square root is always positiv&* can have a zero only wheB > 0
andC = 0. The regions wher& > 0 are (2)—(3) and (6)—(7) in figure 1. On the other
handC can vanish when either, or ¢4 vanishes. Thus a zero &f ™ can occur either at
the boundary of the regions (2)—(3) or (6)—(7). On the boundary of (2)¢£{3}% 0, andC
changes sign in passing from that boundary. On the other hand, on the boundary of (6)—(7),
g4 = 0, and W™ does not change sign, hence it has a double zero. Therefore, if a line
& = constant intersects the curvgsandg, without intersectingy; we have a real solution
with a double zerd (&) and a simple zera(§).

4. Singular solutions of the Sawada-Kotera equation foldg = d; = d, =0
The singular solutions of the Sawada-Kotera equationdfoe d; = d, = 0 are obtained
again by eliminating’ among F = 0 and Fy» = 0, and selecting the factors that are

actually solutions ofF = 0. The results are given below.

225W2 4 60 Wu' + 4u® 4+ 225:%c = 0 (4.18)
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w3+ (%u3 + 15uc) w2+ (§5u6 - %u‘lc* %)uzc2 + %OOC?’)W
+ gt (u* — 75u’c + 187%%)% = 0. (4.1b)

The first solution leads to the usual sésblution. It is a squared factor, hence an envelope,
and it is also a solution which is stationary with respect to the wave speed.

In the second casé¥ (1) is a solution of the differential equatiofi = 0, but it does
not lead to a real solution(x) for the Sawada-Kotera equation. Because of this, we recall
that we need¥ to be a function which is positive between two zeros at b andu = a,
in order to have a real wave of elevation. However, equatiombjdnith W = 0 has no
real solutions fom, hence equation (4b) does not lead to a real solution for

5. Singular solutions of the Kaup equation fordg =d; =d, =0

The singular solutions of the Kaup equation obtained as described above are given below.
In this case, it is convenient to set= —k2.

W+ 2u®—30uk* =0 (5.1a)
W+ gu® — 20uk® = 0 (5.1b)
W+ Au - 20uk? £ 2% =0 (5.1
Wiz = —qgu’ + 20uk® + 20%3 & /25,2 + Sku (Suk + k%) (5.1d)
Waa = — g5’ + 20uk® — 2% & \/25k2 — Sku(—Suk + 0k?). (5.1¢)

Among the solutions above, equations (&) have three simple zeros, hence they can
be solved in terms of elliptic integrals and lead to periodic solutions.

The two solutions given by equation (b)lhave a double root at = F5k and a
simple root atu = +10k. In the first case (with a double root atk), W is positive for
u € (—5k, 10k), hence it gives a wave of elevation in the form of a $eshve.

The last four solutions given by equations (5-¢) have, respectively, double and simple
roots for the valuegbk, 0), (5k, —15k), (—5k, 15k), (—5k, 0). Here a double root means a
point where bothWw and W’ vanish. We note that in all casé® is only C* at the double
root. The solutions with a simple zero (hence maximum amplitude) -at0 lead to the
well known ‘anomalous’ soliton solution of the Kaup equation. On the other hand, the pair
with simple zeros ai-15k are negative in between that asymptotic value and the maximum
amplitude. Thus they can be considered as leading to solutions of the Kaup equation if we
allow x to be complex variable.

The ‘anomalous’ solitary wave solution of the Kaup equation [1] is

1+ 2coshla(x — ct))

- = 1502 5.2
u(e(x —ct)) (cosha(x — ct)) + 2)2 (5.2)

whereq is a constant and = —a?. Explicitly, we have the equation
u% = g\f&xs(a —u)’¥? 4+ 1A5(a —u)® — 40%(a — u)? (5.3)

wherea = 5a2. Note that the right-hand side of the equation is analytic at &t0, and
has a double zero there, but it is ordy atu = a.

This example shows that the equations ¥6rcan have branched solutions, whileis
analytic. It is also interesting that the ansaﬁz: K(a —u)¥?+ Q(a —u), whereQ is a
polynomial with a double zero at = a actually singles out the Sawada-Kotera and Kaup
equations, and leads to the solution above for the Kaup equation, and to a periodic solution
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of the Sawada-Kotera equation. But this latter one is a solution of the Sawada-Kotera
equation when the integration constants are non-zero, hence it does not appear among the
singular solutions above.
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