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Singular travelling wave solutions of the fifth-order KdV,
Sawada-Kotera and Kaup equations

Ayşe Ḧumeyra Bilge†
Department of Mathematics, Institute for Basic Sciences, TUBITAK Marmara Research Center,
PO Box 21, 41470 Gebze, Kocaeli Turkey

Received 25 July 1995, in final form 6 March 1996

Abstract. We obtain second-order equations of degree four (six), for travelling wave solutions
of the KdV (Sawada-Kotera/Kaup) equations, which reduce to first-order equations for monotone
solitary waves. For the KdV equation, the singular solutions of this equation with an asymptotic
valueb consist of the well known sech2 solution and a new solution with a non-zero asymptotic
value depending on the wave speed. We show that the well known solitary wave solutions
are determined uniquely as the singular solutions with asymptotic valueb = 0, which are also
stationary with respect to the wave speed.

1. Introduction

Evolution equations of the form

ut = ∂

∂x
[(αu4 + βuu2 + γ u2

1 + ru3) + (µu2 + qu2) + (pu)] (1.1)

whereuk = ∂ku/∂xk are proposed as model equations for water waves [1]. The ‘travelling
wave’ solutions are of the formu(x, t) = u(x − ct), wherec is the wave speed. As we are
concerned with travelling waves, we redefinec → (c + p), hence setp = 0. Furthermore
we takeα = β = 1 by rescalingu and x. These equations are integrable only for the
following values of the parameters:

5th order KdV equation (KdV5):γ = 1
2 r = 1

10 q = 3
10µ

Sawada-Kotera equation:γ = 0 r = 1
15 µ = q = 0

Kaup equation:γ = 3
4 r = 1

15 µ = q = 0.

These integrable equations withu(x, t) = u(x−ct) admit first integrals that can be obtained
using conserved covariants. It turns out that only the first three of these first integrals
(equations (2.1) and (2.2)) are functionally independent and their existence leads to the
classification above. Thus the differential equations for travelling waves can be reduced
to second-order ordinary differential equations. By eliminatingu4 and u3 among these
equations, we obtain second-order equations which are of degrees 4 and 6, respectively,
for the KdV5 and Sawada-Kotera/Kaup equations (equations (2.7) and (2.8)). The non-
constant factors appearing in the elimination process, except for equation (2.6), are not
solutions of the original equations. This non-constant factor gives a periodic solution of the
Kaup equation.
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Monotone symmetric travelling waves are described by the relationu2
1 = W(u), where

W is positive foru ∈ (b, a), andW(a) = W(b) = 0. If furthermoreW ′(b) = 0, then the
corresponding wave has an asymptotic value atu = b, else it is a periodic solution. Since
u2 = 1

2W ′, the equations for monotone symmetric travelling waves reduce to first-order
equations of the formF(W ′, W, u, c) = 0. In sections 3, 4 and 5 we study, respectively,
the singular solutions of the KdV5, Sawada-Kotera and Kaup equations.

For the KdV5 equation we consider solutions that have an asymptotic valueb not
necessarily zero. We show that there is a unique envelope corresponding to the well known
sech2 solution. The other singular solution gives a new solution whose asymptotic value
and maximum amplitude depend on the wave speed. We also show that the sech2 solution
is stationary with respect to the wave speed, i.e.Fc = 0.

For the Sawada-Kotera and Kaup equations, because of computational limitations, we
consider only those solutions where all the integration constants are zero. In this case we
also obtain some new solutions, and we show that the usual solitary wave solutions are
uniquely determined as those singular solutions that are also stationary with respect to the
wave speed.

2. Equations for travelling waves

2.1. Integrations using conserved covariants

We recall certain concepts. A differential functionF [u] is a differentiable function of the
derivatives ofu up an arbitrary but fixed order. On the space of differential functions, an
inner product is defined by〈f, g〉 = ∫ +∞

−∞ (fg) dx. Adjoints of linear operators are defined
via this inner product.

A differential function σ is called asymmetryif it satisfies the linearized equation
σt −F∗σ = 0, whereF∗ = ∑j=N

j=0
∂F
∂uj

Dj , if F = F(u, u1, . . . , uN). A differential functionγ

is called aconserved covariantif it satisfies the equationγt+F
†
∗γ = 0. A recursion operator

R is a linear operator that sends symmetries to symmetries. The adjoint of the recursion
operatorR† sends conserved covariants to conserved covariants. In the terminology of [3]
integrable equations have an infinite number of symmetries, hence conserved covariants.

For the KdV5, Sawada-Kotera and Kaup equations it can easily be seen thatγ0 = 1 is a
conserved covariant and it is known that all higher symmetries are total derivatives. Using
these properties one can obtain an infinite number of first integrals as follows.

Let σ0 = F [u], γn = (R†)nγ0 andσn = Rnσ0. Then∫
γnF = 〈γn, σ0〉 = 〈R†nγ0, σ0〉 = 〈γ0, R

nσ0〉 = 〈γ0, σn〉.

But the second inner product is just the integral ofσn and since all symmetries are total
derivatives,(γnF ) is a total derivative for alln. Since the time derivative can always be
incorporated into au1 term, we obtain an infinite number of first integrals of (1.1) with the
additional restrictionu(x, t) = u(x − ct). It has been observed that only the first three of
these first integrals (for travelling wave solutions) are functionally independent: these are the
ones obtained exactly by the conserved covariants that give a classification of the equations.
In the following computations, we takec 6= 0. The computations of conserved covariants are
done using an integration package [4] with the symbolic programming language REDUCE.

The computation of the first integralsI0, I1, I2 is straightforward; the results are given
below.
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KdV5 equation:

Conserved covariants: γ0 = 1 γ1 = u γ2 = u2 + 3
10u

2.

First integrals:

I0 = u4 + u2u + u2µ + 1
2u2

1 + 1
10u

3 + 3
10u

2µ + uc + d0 (2.1a)

I1 = u4u − u3u1 + 1
2u2

2 + u2u
2 + u2uµ − 1

2u2
1µ + 3

40u
4 + 1

5u3µ + 1
2u2c + d1 (2.1b)

I2 = u4u2 + 3
10u4u

2 − 1
2u2

3 − 3
5u3u1u + 4

5u2
2u + 1

2u2
2µ + 3

5u2u
2
1

+ 3
10u2u

3 + 3
10u2u

2µ + 1
2u2

1c + 9
500u

5 + 9
200u

4µ + 1
10u

3c + d2. (2.1c)

Sawada-Kotera/Kaup equations:

Conserved covariants: γ0 = 1 γ1 = u2 + (
2
5γ + 1

10

)
u2

γ2 = u4 + (
4
5γ + 3

5

)
uu2 + (

2
5γ + 3

10

)
u2

1 + (− 4
25γ

2 + 17
75γ + 2

75

)
u3.

First integrals:

I0 = u4 + u2u + u2
1γ + 1

15u
3 + uc + d0 (2.2a)

I1 = u4u2 + u4u
2
(

2
5γ + 1

10

) − 1
2u2

3 + u3u1u
(− 4

5γ − 1
5

) + u2
2u

(
2
5γ + 3

5

) + u2u
2
1

(
4
5γ + 1

5

)
+u2u

3
(

2
5γ + 1

10

) + 1
2u2

1c + u5
(

2
125γ + 1

250

) + u3c
(

2
15γ + 1

30

) + d1 (2.2b)

I2 = 1
2u2

4 + u4u2u
(

4
5γ + 3

5

) + u4u
2
1

(
2
5γ + 3

10

) + u4u
3
(

8
75γ + 2

75

) + u2
3u

(− 2
5γ + 1

5

)
+u3u2u1

(
2
5γ − 1

5

) + u3u1u
2
(− 8

25γ + 3
25

) + u3u1c + u3
2

(− 2
5γ + 1

15

)
+u2

2u
2
(

14
25γ + 6

25

) − 1
2u2

2c + u2u
2
1u

(
26
25γ + 3

50

) + u2u
4
(

8
75γ + 2

75

)
+u4

1

(
7
50γ + 3

50

) + u2
1u

3
(

2
75γ + 1

50

) + u2
1uc

(
2
5γ + 3

10

)
+u6

(
4

1125γ + 1
1125

) + u4c
(

2
75γ + 1

150

) + d2. (2.2c)

Remark 1. If u = b is an asymptotic value, thenui |u=b = 0 for i > 0. Substituting
these in the first integrals we can obtain the expressions ofdi , i = 0, 1, 2 in terms ofb.
If there are two distinct asymptotic valuesb and b′, then we should havedi(b) = di(b

′),
but it is checked that these equations have no consistent solutionb 6= b′, hence the KdV5,
Sawada-Kotera and Kaup equations cannot have kink solutions.

Remark 2. If u = a is an extremum value, thenu2k+1|u=a = 0. This condition gives the
allowable relationships among the amplitude and the speed of travelling waves, as below.
In the following, we use the notationuk|u=a = ak.

KdV5 equation with asymptotic value b:

(i) 50c − 4a2 − 10ab − b2 = 0 µ = − 3
5a − 2

5b

a2 = ± 1
10(a − b)2 a4 = ∓ 1

25(a − b)3 (2.3a)

(ii) 2a2 + 2a(3b + 5µ) + 7b2 + 20bµ + 50c = 0

a2 = − 1
10(a − b)2 a4 = 1

25(a − b)3 (2.3b)

(iii) a2 − 2ab + 6b2 + 10bµ + 100c − 25µ2

a2 = − 1
10[2a2 + a(b + 5µ) − b(3b + 5µ)]

a4 = 1
100(a − b)[11a2 + 2a(9b + 20µ) − 4b2 + 10bµ + 25µ2]. (2.3c)

Sawada-Kotera equation withd0 = d1 = d2 = 0:

225c + 4a2 = 0 a2 = − 1
15a

2 a4 = 4
225a

3. (2.4)
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Kaup equation withd0 = d1 = d2 = 0:

(i) 225c + a2 = 0 a4 = 46
225a

3 a2 = − 4
15a

2 (2.5a)

(ii) 25c + a2 = 0 a4 = − 2
75a

3 a2 = 0 (2.5b)

(iii) 100c + a2 = 0 a4 = 73
300a

3 a2 = − 3
10a

2. (2.5c)

We note that (2.3b) reduces to (2.3a) for the specific value ofµ. This solution
is obtained as a special case, by the vanishing of a coefficient during the elimination
process. Equations (2.3b), (2.4) and (2.5b) correspond to the usual solitary waves, while
equation (2.3c) corresponds to the new solution given in section 4.

For the Sawada-Kotera and Kaup equations, the list of possible maximum amplitudes
for a non-zero asymptotic value is quite large, but as the singular solutions are studied only
for the cased0 = d1 = d2 = 0, these results are also omitted.

2.2. Second-order nonlinear equations for travelling waves

The elimination of higher derivatives from the first integrals (2.1)–(2.2) leads to second-order
equations foru. During this elimination process the equations obtained by the vanishing of
the coefficients of higher-order derivatives also give certain solutions. Such a case occurs
only for the Kaup equation.

A solution of the Kaup equation:

u1
(
u2 + 2

5u2 + 10c
) = 0. (2.6)

Assumingu1 6= 0 and integrating we obtainu2
1 = − 4

15u
3 − 20uc + 20d0, and from the first

integrals we getd1 = −10cd0, d2 = 50
3 c3 − 2d2

0. It can be seen that only static solutions
can have an asymptotic value. Sinceu2

1 is equal to a third-order polynomial with distinct
roots, the solutions are periodic functions given in terms of elliptic integrals [5].

The eliminations lead to the following equations. We omit the explicit expression of
the coefficients.

KdV5 equation:

u4
2 + [A21u

2
1 + A22]u2

2 + [A11u
4
1 + A12u

2
1]u2 + [A01u

4
1 + A02u

2
1 + A03] = 0. (2.7)

Sawada-Kotera/Kaup equations:

0 = u6
2 + A5u

5
2 + [A41u

2
1 + A42]u4

2 + [A31u
4
1 + A32u

2
1 + A33]u3

2

+[A21u
4
1 + A22u

2
1 + A23]u2

2 + [A11u
6
1 + A12u

4
1 + A13u

2
1]u2

+[A01u
8
1 + A02u

6
1 + A03u

4
1 + A04u

2
1 + A05]. (2.8)

2.3. Monotone symmetric travelling waves

Monotone symmetric travelling waves can be described by the equationu2
1 = W(u)

where W(u) is positive for b < u < a and W(b) = W(a) = 0 [1]. We recall that
if u1 = du/dx = √

W(u), then x(u) can be obtained by integratingW−1/2. Precisely,
if u0 ∈ (b, a), then x(u) = ∫ u

u0
W−1/2(ξ) dξ for u > u0, and x(u) = − ∫ u

u0
W−1/2(ξ) dξ

for u < u0. As x(u) is an increasing function, its inverseu(x) is defined and it is also
increasing. If the second integral is divergent then the domain of definition ofW is semi-
infinite. If W vanishes at an end point where it is differentiable, then all the odd derivatives
of u vanish there, henceu can be extended as a symmetric function. Thus in particular, if
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W is analytic, and has a simple zero atu = a and a double zero atu = b, then it leads to
a monotone symmetric wave with asymptotic valueb and maximum amplitudea.

Substitutingu2
1 = W , u2 = 1

2W ′ in equations (2.7)–(2.8), we obtain first-order equations
F(W ′, W, u, c, b) = 0 for W . For the KdV5 case, as (2.7) is a quartic inW ′, the general
solution can in principle be obtained as an algebraic function. However, the determination
of the properties such as the number of real branches and the differentiability of the
corresponding equations is difficult to investigate.

We give here a brief review of the properties of solutions of nonlinear equations of the
form F(W ′, W, u, c) = 0, based on [2, section 3.5]. LetF be polynomial inW ′ and single-
valued inW andu. If F = 0 has a simple rootW ′

0 whenW = W0, u = u0, thenW ′ can
be solved fromF = 0 as a single-valued functionW ′ = f (W, u, c) in a neighbourhood of
(u0, W0, W

′
0). Then there is a unique solution with the initial conditionsW ′ = W ′

0, W = W0

andu = u0, provided thatf (W, u, c) satisfies a Lipschitz condition. However, even in the
KdV5 case where we can obtain the functionsf (W, u, c), it is not possible to check the
Lipschitz condition, hence to discuss uniqueness of solutions (for each of the branches). On
the other hand, at points(W ′

0, W0, u0) whereF(W ′, W, u, c) = 0 has a repeated root, the
existence theorems are not applicable at all, but the study of these singular points gives im-
portant information about the structure of the solutions, the most important being the fact that
the envelope of solutions, if it exists, is a singular solution that appears as a squared factor in
thep-discriminant. We report below some definitions and certain results in [2, section 3.5].

The triad(W ′
0, W0, u0) for which

F(W ′, W, u, c) = 0 FW ′(W ′, W, u, c) = 0 (2.9)

is called asingular line element. At such a point the equationF(W ′
0, W0, u0, c) = 0 has

a multiple rootW ′
0, hence such points are calledmultiple points. The polynomial obtained

from the elimination ofW ′ among these equations is called thep-discriminant locus. The
factors of this polynomial describe various branches of thep-discriminant locus. These
branches may or may not be solutions of the differential equationF(W ′, W, u, c) = 0. The
p-discriminant locus may contain (i) the envelope of solutions (if there is an envelope),
(ii) the locus of multiple points with coincident tangents (such as cusps), (iii) thetac-locus
which consists of the points where different integral curves have a common tangent, (iv) the
particular solutions corresponding to a specific value of the integration constant in the general
solution. A branch of thep-discriminant is a polynomialP(W, u, c) = 0. One can check
directly whether this polynomial actually gives a solution of the original equation, in which
case we obtain asingular solution. If P(W, u, c) is a squared factor of thep-discriminant
and it gives rise to a solution, this solution is an envelope, else it gives the tac-locus.

We will study thep-discriminant locus for the KdV5 for arbitrary asymptotic value
b, but we takeb = 0 for the Sawada-Kotera and Kaup equations due to computational
limitations.

Critical points of the KdV5 equation:

25W 2 + 10u3W + 25u2Wµ + u6 + 5u5µ + 25u4c = 0. (2.10)

Critical points of the Sawada-Kotera equation:

225W 2 + 60Wu3 + 4u6 + 225u4c = 0. (2.11)

Critical points of the Kaup equation (c = −k2):

225W 2 + 120W(u + 5k)2(u − 10k) + 16u2(u + 5k)3(u − 15k) = 0 (2.12a)

225W 2 + 120Wu(u2 − 75k2) + 16(u2 − 25k2)2(u2 − 100k2) = 0. (2.12b)
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3. Singular solutions of the KdV5 equation with an asymptotic valueb

The equation for monotone symmetric travelling wave solutions of the KdV5 equation is
a fourth degree polynomial inW ′ of the form F(W ′, W, u, c, b, µ) = 0. The singular
solutions are obtained by eliminatingW ′ amongF = 0 and FW ′ = 0, factorizing the
resulting expression, and selecting those factorsP(W, u, c, b, µ) such that whenW ′ is
solved from dP/du = 0, it satisfiesF = 0 moduloP = 0. With this method we obtain the
following singular solutions.

W 2 + 1
5W(−u + b)2(2u + 3b + 5µ)

+ 1
50(−u + b)4[2u2 + 2u(3b + 5µ) + 7b2 + 20bµ + 50c] = 0 (3.1a)

W 2 + 2
135W(2u + 3b + 5µ)[13u2 + 2u(−3b + 10µ) + 63b2 + 120bµ + 900c − 200µ2]

+ 1
27[u2 + 2u(b + 2µ) + 3b2 + 8bµ + 20c]2

×[u2 − 2ub + 6b2 + 10bµ + 100c − 25µ2] = 0. (3.1b)

Equation (3.1a) leads to the usual sech2 solution, and it is actually a squared factor of
the p-discriminant, hence it is the envelope of solutions with an asymptotic valueb.

Equation (3.1b) is a simple factor of thep-discriminant, thus it is a solution
corresponding to a special value of the integration constant in the general solution. We will
show that whenc andb belong to a certain open set, there are solutionsW(u) leading to
monotone symmetric waves of elevation whose asymptotic values and maximum amplitudes
both depend on the wave speed.

We make the following change of variables

u = v + b µ′ = b + µ c′ = 10c − 3µ2. (3.2)

Then equation (3.1b) can be solved as

W± = − 1
135(2v + 5µ′)(13v2 + 20vµ′ + 70µ′2 + 90c′)

± 1
135(v

2 + 20vµ′ + 10µ′2 − 30c′)3/2. (3.3)

Defining

z = v

µ′ ξ = c′

µ′2 (3.4)

we obtain

µ′3W± = − 1
135(2z + 5)(13z2 + 20z + 70+ 90ξ) ± 1

135(z
2 + 20z + 10− 30ξ)3/2. (3.5)

We will show that forξ < −3, W+ have a double zero atb(ξ) and a simple zero ata(ξ),
with W+ > 0 for b(ξ) < z < a(ξ).

Let

q1 = z2 + 20z + 10− 30ξ
q2 = z2 + 5 + 10ξ
q3 = 13z2 + 20z + 70+ 90ξ (3.6)
q4 = z2 + 4z + 6 + 2ξ

q5 = 2z + 5.

The zero sets of theqi , i = 1, . . . , 5 are shown in figure 1. It can be checked that the only
intersection point of these curves isz = − 5

2, ξ = − 9
8.

For definiteness we work withW+ that leads to a wave of elevation. By similar
considerations,W− leads to a wave of depression. First note that since 135µ′3W+ =
−q5q3 + q

3/2
1 , W+ is real forq1 > 0, i.e. except for regions (1) and (10) in figure 1.
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Figure 1.

Let B and C be defined byB = q5q3 and q3
1 = B2 − 4C. Then one can compute

C = q2q
2
4. As the square root is always positive,W+ can have a zero only whenB > 0

and C = 0. The regions whereB > 0 are (2)–(3) and (6)–(7) in figure 1. On the other
handC can vanish when eitherq2 or q4 vanishes. Thus a zero ofW+ can occur either at
the boundary of the regions (2)–(3) or (6)–(7). On the boundary of (2)–(3),q2 = 0, andC

changes sign in passing from that boundary. On the other hand, on the boundary of (6)–(7),
q4 = 0, andW+ does not change sign, hence it has a double zero. Therefore, if a line
ξ = constant intersects the curvesq4 andq2 without intersectingq1 we have a real solution
with a double zerob(ξ) and a simple zeroa(ξ).

4. Singular solutions of the Sawada-Kotera equation ford0 = d1 = d2 = 0

The singular solutions of the Sawada-Kotera equation ford0 = d1 = d2 = 0 are obtained
again by eliminatingW ′ amongF = 0 andFW ′ = 0, and selecting the factors that are
actually solutions ofF = 0. The results are given below.

225W 2 + 60∗ Wu3 + 4u6 + 225u4c = 0 (4.1a)
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W 3 + (
1
3u3 + 15uc

)
W 2 + (

8
225u

6 − 4
3u4c− 100

3 u2c2 + 2500
9 c3

)
W

+ 4
3375u(u4 − 75u2c + 1875c2)2 = 0. (4.1b)

The first solution leads to the usual sech2 solution. It is a squared factor, hence an envelope,
and it is also a solution which is stationary with respect to the wave speed.

In the second case,W(u) is a solution of the differential equationF = 0, but it does
not lead to a real solutionu(x) for the Sawada-Kotera equation. Because of this, we recall
that we needW to be a function which is positive between two zeros atu = b andu = a,
in order to have a real wave of elevation. However, equation (4.1b) with W = 0 has no
real solutions foru, hence equation (4.1b) does not lead to a real solution foru.

5. Singular solutions of the Kaup equation ford0 = d1 = d2 = 0

The singular solutions of the Kaup equation obtained as described above are given below.
In this case, it is convenient to setc = −k2.

W + 3
10u

3 − 30uk2 = 0 (5.1a)

W + 4
5u3 − 20uk2 = 0 (5.1b)

W + 4
15u

3 − 20uk2 ∓ 200
3 k3 = 0 (5.1c)

W1,2 = − 4
15u

3 + 20uk2 + 200
3 k3 ±

√
25k2 + 5ku

(
8
3uk + 40

3 k2
)

(5.1d)

W3,4 = − 4
15u

3 + 20uk2 − 200
3 k3 ±

√
25k2 − 5ku

(− 8
3uk + 40

3 k2
)
. (5.1e)

Among the solutions above, equations (5.1a–b) have three simple zeros, hence they can
be solved in terms of elliptic integrals and lead to periodic solutions.

The two solutions given by equation (5.1c) have a double root atu = ∓5k and a
simple root atu = ±10k. In the first case (with a double root at−5k), W is positive for
u ∈ (−5k, 10k), hence it gives a wave of elevation in the form of a sech2 wave.

The last four solutions given by equations (5.1d–e) have, respectively, double and simple
roots for the values(5k, 0), (5k, −15k), (−5k, 15k), (−5k, 0). Here a double root means a
point where bothW andW ′ vanish. We note that in all casesW is only C1 at the double
root. The solutions with a simple zero (hence maximum amplitude) atu = 0 lead to the
well known ‘anomalous’ soliton solution of the Kaup equation. On the other hand, the pair
with simple zeros at±15k are negative in between that asymptotic value and the maximum
amplitude. Thus they can be considered as leading to solutions of the Kaup equation if we
allow x to be complex variable.

The ‘anomalous’ solitary wave solution of the Kaup equation [1] is

u(α(x − ct)) = 15α2 1 + 2 cosh(α(x − ct))

(cosh(α(x − ct)) + 2)2
(5.2)

whereα is a constant andc = −α2. Explicitly, we have the equation

u2
1 = 8

3

√
5α3(a − u)3/2 + 4

15(a − u)3 − 4α2(a − u)2 (5.3)

wherea = 5α2. Note that the right-hand side of the equation is analytic at atu = 0, and
has a double zero there, but it is onlyC1 at u = a.

This example shows that the equations forW can have branched solutions, whileu is
analytic. It is also interesting that the ansatzu2

1 = K(a − u)3/2 + Q(a − u), whereQ is a
polynomial with a double zero atu = a actually singles out the Sawada-Kotera and Kaup
equations, and leads to the solution above for the Kaup equation, and to a periodic solution
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of the Sawada-Kotera equation. But this latter one is a solution of the Sawada-Kotera
equation when the integration constants are non-zero, hence it does not appear among the
singular solutions above.

Acknowledgment

This work is partially supported by the Scientific and Technical Research Council of Turkey.

References

[1] Kichenassamy S and Olver P J 1992 Existence and non-existence of solitary wave solutions to higher order
model evolution equationsSIAM J. Math. Anal.23 1141

[2] Ince E L 1956Ordinary Differential Equations(New York: Dover)
[3] Fokas A S 1987 Symmetries and integrabilityStud. Appl. Math.77 253
[4] Bilge A H 1992 A REDUCE program for the integration of differential polynomialsComput. Phys. Commun.

71 263
[5] Whittaker E T and Watson G N 1969A Course of Modern Analysis(Cambridge: Cambridge University Press)


